Câu hỏi
Cho hai số phức \({z_1} = 5 - i\), \({z_2} = 1 + i\). Phần thực của số phức \(\dfrac{{{z_1}}}{{{z_2}}}\) bằng:
- A \(6\)
- B \(2\)
- C \(-3\)
- D \(4\)
Phương pháp giải:
Sử dụng: \(\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{{a_1} + {b_1}i}}{{{a_2} + {b_2}i}}\)\( = \dfrac{{\left( {{a_1} + {b_1}i} \right)\left( {{a_2} - {b_2}i} \right)}}{{a_2^2 + b_2^2}}\)
Lời giải chi tiết:
Ta có: \(\dfrac{{{z_1}}}{{{z_2}}}\)\( = \dfrac{{5 - i}}{{1 + i}} = \dfrac{{\left( {5 - i} \right)\left( {1 - i} \right)}}{{{1^2} - {i^2}}}\)\( = \dfrac{{5 - 6i + {i^2}}}{2}\)\( = \dfrac{{4 - 6i}}{2} = 2 - 3i\)
Số phức \(2 - 3i\) có phần thực bằng \(2.\)
Chọn B.