Câu hỏi
Trong không gian với hệ trục tọa độ \(Oxyz,\) cho hai mặt phẳng \(\left( P \right):\,\,\,3x - my - z + 7 = 0\) và \(\left( Q \right):\,\,\,6x + 5y - 2z - 4 = 0\). Hai mặt phẳng \(\left( P \right)\)và \(\left( Q \right)\) song song với nhau khi \(m\) bằng
- A \(m = \dfrac{{ - 5}}{2}.\)
- B \(m = \dfrac{5}{2}.\)
- C \(m = - 30.\)
- D \(m = 4.\)
Phương pháp giải:
Hai mặt phẳng song song với nhau khi và chỉ khi hai VTPT của hai mặt phẳng cùng phương.
Lời giải chi tiết:
Mặt phẳng \(\left( P \right):\,\,\,3x - my - z + 7 = 0\) có 1 VTPT \(\overrightarrow {{n_P}} = \left( {3; - m; - 1} \right)\).
Mặt phẳng \(\left( Q \right):\,\,\,6x + 5y - 2z - 4 = 0\) có 1 VTPT \(\overrightarrow {{n_Q}} = \left( {6;5; - 2} \right)\).
Để \(\left( P \right)\parallel \left( Q \right)\) thì \(\overrightarrow {{n_P}} ,\,\,\overrightarrow {{n_Q}} \) cùng phương \( \Leftrightarrow \dfrac{3}{6} = \dfrac{{ - m}}{5} = \dfrac{{ - 1}}{{ - 2}} \Leftrightarrow m = - \dfrac{5}{2}\).
Chọn A.