Câu hỏi

Rút gọn \(\frac{{\left( {x\sqrt y  + y\sqrt x } \right)\left( {\sqrt x  - \sqrt y } \right)}}{{\sqrt {xy} }}\) với \(x > 0,\,y > 0.\)

  • A \(x - y\)
  • B \(x + y\)
  • C \( - x + 2y\)     
  • D Kết quả khác

Phương pháp giải:

Với \(B \ge 0\), ta có \(\sqrt {{A^2}.B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,\,\,khi\,\,\,\,A \ge 0\\ - A\sqrt B \,\,\,khi\,\,\,A < 0\end{array} \right..\)

Áp dụng hằng đẳng thức đáng nhớ: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

Phân tích biểu thức ở trong căn thành nhân tử.

Lời giải chi tiết:

\(\begin{array}{l}\frac{{\left( {x\sqrt y  + y\sqrt x } \right)\left( {\sqrt x  - \sqrt y } \right)}}{{\sqrt {xy} }}\\ = \frac{{\left( {\sqrt x .\sqrt x .\sqrt y  + \sqrt y .\sqrt y .\sqrt x } \right)\left( {\sqrt x  - \sqrt y } \right)}}{{\sqrt {xy} }}\\ = \frac{{\sqrt {xy} \left( {\sqrt x  + \sqrt y } \right)\left( {\sqrt x  - \sqrt y } \right)}}{{\sqrt {xy} }}\\ = \left( {\sqrt x  + \sqrt y } \right)\left( {\sqrt x  - \sqrt y } \right)\\ = {\left( {\sqrt x } \right)^2} - {\left( {\sqrt y } \right)^2}\\ = x - y.\end{array}\)

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay