Câu hỏi

Rút gọn biểu thức \(A = \sqrt {x + 2\sqrt {2x - 4} }  + \sqrt {x - 2\sqrt {2x - 4} } \) với \(x \ge 2\) ta được:

  • A \(A = 2\sqrt 2 \) hoặc \(A = 2\sqrt {x - 2} \)  
  • B \(A = 2\sqrt 2 \)        
  • C \(A = 2\sqrt {x - 2} \)  
  • D A, B, C đều sai

Phương pháp giải:

Với \(B \ge 0\), ta có \(\sqrt {{A^2}.B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,\,\,khi\,\,\,\,A \ge 0\\ - A\sqrt B \,\,\,khi\,\,\,A < 0\end{array} \right..\)

Áp dụng hằng đẳng thức đáng nhớ để xử lý bài toán: \({\left( {A \pm B} \right)^2} = {A^2} \pm 2AB + {B^2}\)

Lời giải chi tiết:

Điều kiện: \(x \ge 2\)

\(\begin{array}{l}A = \sqrt {x + 2\sqrt {2x - 4} }  + \sqrt {x - 2\sqrt {2x - 4} } \\ = \sqrt {x + 2\sqrt {2\left( {x - 2} \right)} }  + \sqrt {x - 2\sqrt {2\left( {x - 2} \right)} } \\ = \sqrt {x - 2 + 2\sqrt 2 .\sqrt {x - 2}  + 2}  + \sqrt {x - 2 - 2\sqrt 2 .\sqrt {x - 2}  + 2} \\ = \sqrt {{{\left( {\sqrt {x - 2}  + \sqrt 2 } \right)}^2}}  + \sqrt {{{\left( {\sqrt {x - 2}  - \sqrt 2 } \right)}^2}} \\ = \left| {\sqrt {x - 2}  + \sqrt 2 } \right| + \left| {\sqrt {x - 2}  - \sqrt 2 } \right|\\ = \sqrt {x - 2}  + \sqrt 2  + \left| {\sqrt {x - 2}  - \sqrt 2 } \right|\,\,\,\end{array}\)

+) Với \(\sqrt {x - 2}  - \sqrt 2  \ge 0 \Leftrightarrow \sqrt {x - 2}  \ge \sqrt 2 \) \( \Leftrightarrow x - 2 \ge 2 \Leftrightarrow x \ge 4\) ta có: \(\left| {\sqrt {x - 2}  - \sqrt 2 } \right| = \sqrt {x - 2}  - \sqrt 2 \)

\( \Rightarrow A = \sqrt {x - 2}  + \sqrt 2  + \sqrt {x - 2}  - \sqrt 2 \) \( = 2\sqrt {x - 2} .\)

+) Với \(\sqrt {x - 2}  - \sqrt 2  < 0 \Leftrightarrow \sqrt {x - 2}  < \sqrt 2 \) \( \Leftrightarrow x - 2 < 2 \Leftrightarrow x < 4\) ta có: \(\left| {\sqrt {x - 2}  - \sqrt 2 } \right| = \sqrt 2  - \sqrt {x - 2} \)

\( \Rightarrow A = \sqrt {x - 2}  + \sqrt 2  + \sqrt 2  - \sqrt {x - 2}  = 2\sqrt 2 .\)

Vậy \(A = \left\{ \begin{array}{l}2\sqrt {x - 2} \,\,\,khi\,\,\,x \ge 4\\2\sqrt 2 \,\,\,khi\,\,\,2 \le x < 4\end{array} \right..\)  

 Chọn A.  


Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay