Câu hỏi
Cho hình nón có chiều cao bằng a. Biết rằng khi cắt hình nón đã cho bởi một mặt phẳng đi qua đỉnh hình nón và cách tâm của đáy hình nón một khoảng bằng \(\dfrac{a}{3}\), thiết diện thu được là một tam giác vuông. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng:
- A \(\dfrac{{5\pi {a^3}}}{{12}}.\)
- B \(\dfrac{{\pi {a^3}}}{3}.\)
- C \(\dfrac{{4\pi {a^3}}}{9}.\)
- D \(\dfrac{{5\pi {a^3}}}{9}.\)
Phương pháp giải:
- Giả sử thiết diện của hình chóp cắt bởi mặt phẳng đi qua đỉnh và cách tâm một khoảng \(\dfrac{a}{3}\) là tam giác \(SAB\). Gọi \(O\) là tâm đáy của hình nón.
- Xác định khoảng cách từ \(O\) đến \(\left( {SAB} \right)\).
- Sử dụng hệ thức lượng và định lí Pytago trong tam giác vuông tính bán kính đáy của hình nón.
- Thể tích khối nón có chiều cao \(h\), bán kính đáy \(r\) là \(V = \dfrac{1}{3}\pi {r^2}h\).
Lời giải chi tiết:
Giả sử thiết diện của hình chóp cắt bởi mặt phẳng đi qua đỉnh và cách tâm một khoảng \(\dfrac{a}{3}\) là tam giác \(SAB\), ta có \(\Delta SAB\) vuông cân tại \(S\).
Gọi \(O\) là tâm đáy của hình nón, gọi \(M\) là trung điểm của \(AB\). Trong \(\left( {SOM} \right)\) kẻ \(OH \bot SM\,\,\left( {H \in SM} \right)\).
Ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}AB \bot OM\\AB \bot SO\end{array} \right. \Rightarrow SB \bot \left( {SOM} \right) \Rightarrow AB \bot OH\\\left\{ \begin{array}{l}OH \bot AB\\OH \bot SM\end{array} \right. \Rightarrow OH \bot \left( {SAB} \right)\\ \Rightarrow d\left( {O;\left( {SAB} \right)} \right) = OH = \dfrac{a}{3}\end{array}\)
Áp dụng hệ thức lượng trong tam giác vuông \(SOM\) ta có:
\(\begin{array}{l}\dfrac{1}{{O{H^2}}} = \dfrac{1}{{S{O^2}}} + \dfrac{1}{{O{M^2}}}\\ \Leftrightarrow \dfrac{9}{{{a^2}}} = \dfrac{1}{{{a^2}}} + \dfrac{1}{{O{M^2}}}\\ \Leftrightarrow \dfrac{1}{{O{M^2}}} = \dfrac{8}{{{a^2}}}\\ \Leftrightarrow OM = \dfrac{{a\sqrt 2 }}{4}\end{array}\)
Lại có \(SM = \dfrac{{SO.OM}}{{OH}} = \dfrac{{a.\dfrac{{a\sqrt 2 }}{4}}}{{\dfrac{a}{3}}} = \dfrac{{3\sqrt 2 a}}{4}\), tam giác \(SAB\) vuông cân tại \(S\) nên \(SM = \dfrac{1}{2}AB\).
\( \Rightarrow AB = 2SM = \dfrac{{3\sqrt 2 a}}{2}\) \( \Rightarrow AM = \dfrac{1}{2}AB = \dfrac{{3\sqrt 2 a}}{4}\).
Áp dụng định lí Pytago trong tam giác vuông \(OAM\) ta có:
\(OA = \sqrt {O{M^2} + A{M^2}} = \sqrt {{{\left( {\dfrac{{a\sqrt 2 }}{4}} \right)}^2} + {{\left( {\dfrac{{3\sqrt 2 a}}{4}} \right)}^2}} = \dfrac{{a\sqrt 5 }}{2}\).
Vậy thể tích khối nón là: \(V = \dfrac{1}{3}\pi O{A^2}.SO = \dfrac{1}{3}\pi .{\left( {\dfrac{{a\sqrt 5 }}{2}} \right)^2}.a = \dfrac{{5\pi {a^3}}}{{12}}\).
Chọn A.