Câu hỏi

Trong không gian Oxyz, mặt phẳng đi qua tâm của mặt cầu\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\)và songsong với mặt phẳng \(\left( {Oxz} \right)\)có phương trình là

  • A \(y + 2 = 0\)
  • B \(x + z - 1 = 0\)
  • C \(y - 2 = 0\)
  • D \(y + 1 = 0\)

Phương pháp giải:

- Mặt cầu \(\left( S \right):\,\,{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) và bán kính R.

- Hai mặt phẳng song song có cùng VTPT.

- Phương trình mặt phẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) là:

\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

Lời giải chi tiết:

Mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\) có tâm \(I\left( {1; - 2;0} \right)\).

Mặt phẳng cần tìm song song với mặt phẳng (Oxz) nên có 1 VTPT là \(\overrightarrow j  = \left( {0;1;0} \right)\).

Vậy phương trình mặt phẳng cần tìm là: \(1\left( {y + 2} \right) = 0 \Leftrightarrow y + 2 = 0.\)

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay