Câu hỏi

Có bao nhiêu số phức thỏa mãn \({z^2} + 2\left( {\overline z } \right) = 0\)?

  • A \(0\)
  • B \(1\)
  • C \(2\)
  • D \(4\)

Phương pháp giải:

- Đặt \(z = a + bi \Rightarrow \overline z  = a - bi\), thay vào dữ kiện để tìm a, b.

- Số phức bằng 0 khi và chỉ khi nó có phần thực và phần ảo cùng bằng 0.

Lời giải chi tiết:

Đặt \(z = a + bi \Rightarrow \overline z  = a - bi.\)

Khi đó ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,{z^2} + 2\overline z  = 0\\ \Leftrightarrow {\left( {a + bi} \right)^2} + 2\left( {a - bi} \right) = 0\\ \Leftrightarrow {a^2} + 2abi + {b^2}{i^2} + 2a - 2bi = 0\\ \Leftrightarrow {a^2} - {b^2} + 2a + \left( {2ab - 2b} \right)i = 0\\ \Leftrightarrow \left\{ \begin{array}{l}{a^2} + {b^2} + 2a = 0\\2ab - 2b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} + {b^2} + 2a = 0\\2b\left( {a - 1} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{a^2} + {b^2} + 2a = 0\\\left[ \begin{array}{l}b = 0\\a = 1\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a = 1\\{b^2} + 3 = 0\,\,\left( {VN} \right)\end{array} \right.\\\left\{ \begin{array}{l}b = 0\\{a^2} + 2a = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 0\\\left[ \begin{array}{l}a = 0\\a =  - 2\end{array} \right.\end{array} \right.\end{array}\)

Vậy có 2 số phức thỏa mãn yêu cầu bài toán là \(z = 0\) và \(z =  - 2\).

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay