Câu hỏi

Một lớp có 30 học sinh gồm 20 nam và 10 nữ. Hỏi có bao nhiêu cách chọn ra một nhóm 3 học sinh trong đó có ít nhất một học sinh nữ.

  • A \(1140\)
  • B \(2920\)
  • C \(1900\)
  • D \(900\)

Phương pháp giải:

Thực hiện 2 phương án:

- Phương án 1: Chọn 1 học sinh nữ và 2 học sinh nam.

- Phương án 2: Chọn 2 học sinh nữ và 1 học sinh nữ.

Sau đó áp dụng quy tắc cộng.

Lời giải chi tiết:

Để chọn ra 3 học sinh trong đó có ít nhất một học sinh nữa ta có các phương án sau:

Phương án 1: Chọn 1 học sinh nữ và 2 học sinh nam, có \(C_{10}^1.C_{20}^2\) cách thực hiện.

Phương án 2: Chọn 2 học sinh nữ và 1 học sinh nữ, có \(C_{10}^2.C_{20}^1\) cách thực hiện.

Theo quy tắc cộng, ta có: \(C_{10}^1.C_{20}^2 + C_{10}^2.C_{20}^1 = 2920\) cách chọn ra 3 học sinh có cả nam và nữ.

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay