Câu hỏi
Cho hai số phức \({z_1} = - 1 + 2i;\) \({z_2} = 1 + 2i\). Tinh \(T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\)
- A \(T = 2\sqrt 5 \)
- B \(T = 4\)
- C \(T = 10\)
- D \(T = 7\)
Phương pháp giải:
Số phức \(z = a + bi\) có môđun \(\left| z \right| = \sqrt {{a^2} + {b^2}} \).
Lời giải chi tiết:
Ta có
\(\begin{array}{l}{z_1} = - 1 + 2i \Rightarrow \left| {{z_1}} \right| = \sqrt {{{\left( { - 1} \right)}^2} + {2^2}} = \sqrt 5 \\{z_2} = 1 + 2i \Rightarrow \left| {{z_2}} \right| = \sqrt {{1^2} + {2^2}} = \sqrt 5 \end{array}\)
Vậy \(T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = 5 + 5 = 10.\)
Chọn C.