Câu hỏi

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( {3x} \right) = f\left( x \right) - 2x,\,\,\,\forall x \in \mathbb{R}\) và \(\int\limits_0^1 {f\left( x \right)dx = 5} \). Giá trị \(\int\limits_1^3 {f\left( x \right)dx} \) bằng

  • A \(4.\)
  • B \(10.\)
  • C \(7.\)
  • D \(12.\)

Phương pháp giải:

- Áp dụng phương pháp tích phân từ 0 đến 1 hai vế của \(f\left( {3x} \right) = f\left( x \right) - 2x,\,\,\,\forall x \in \mathbb{R}\).

- Sử dụng phương pháp đổi biến số.

- Sử dụng tính chất tích phân: \(\int\limits_a^b {f\left( x \right)dx}  + \int\limits_b^c {f\left( x \right)dx}  = \int\limits_a^c {f\left( x \right)dx} \).

Lời giải chi tiết:

Ta có \(f\left( {3x} \right) = f\left( x \right) - 2x\).

Lấy tích phân từ 0 đến 1 hai vế ta có:

\( \Rightarrow \int\limits_0^1 {f\left( {3x} \right)dx}  = \int\limits_0^1 {f\left( x \right)dx - } \int\limits_0^1 {2xdx}  = 5 - 1 = 4\)

Đặt \(t = 3x \Rightarrow dt = 3dx\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 1 \Rightarrow t = 1\end{array} \right.\) \( \Rightarrow \int\limits_0^1 {f\left( {3x} \right)dx}  = \dfrac{1}{3}\int\limits_0^3 {f\left( t \right)dt}  = 4 \Leftrightarrow \int\limits_0^3 {f\left( t \right)dt}  = 12\) \( \Rightarrow \int\limits_0^3 {f\left( x \right)dx}  = 12\).

Vậy \(\int\limits_1^3 {f\left( x \right)dx}  = \int\limits_1^0 {f\left( x \right)dx}  + \int\limits_0^3 {f\left( x \right)dx}  =  - 5 + 12 = 7.\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay