Câu hỏi

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1; - 3;2} \right)\) và chứa trục \(Oz\). Gọi \(\overrightarrow n \left( {a;b;c} \right)\) là một véc-tơ pháp tuyến của mặt phẳng \(\left( P \right)\). Tính \(M = \dfrac{{b + c}}{a}\).

  • A \(M =  - \dfrac{1}{3}\)
  • B \(M = 3\)
  • C \(M = \dfrac{1}{3}\)
  • D \(M =  - 3\)

Phương pháp giải:

- \(\left\{ \begin{array}{l}OA \subset \left( P \right)\\Oz \subset \left( P \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow n .\overrightarrow {OA}  = 0\\\overrightarrow n .\overrightarrow k  = 0\end{array} \right. \Rightarrow \overrightarrow n  = \left[ {\overrightarrow k ;\overrightarrow {OA} } \right]\)

- Mọi vectơ cùng phương với \(\overrightarrow n \) đều là VTPT của mặt phẳng \(\left( P \right)\).

- Xác định \(a,\,\,b,\,\,c\) và tính giá trị của \(M\).

Lời giải chi tiết:

Ta có: \(\left\{ \begin{array}{l}OA \subset \left( P \right)\\Oz \subset \left( P \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow n .\overrightarrow {OA}  = 0\\\overrightarrow n .\overrightarrow k  = 0\end{array} \right. \Rightarrow \overrightarrow n  = \left[ {\overrightarrow k ;\overrightarrow {OA} } \right]\).

Có: \(\overrightarrow {OA}  = \left( {1; - 3;2} \right),\,\,\overrightarrow k  = \left( {0;0;1} \right) \Rightarrow \left[ {\overrightarrow k ;\overrightarrow {OA} } \right] = \left( {3;1;0} \right)\).

\( \Rightarrow a = 3,\,\,b = 1,\,\,c = 0\).

Vậy \(M = \dfrac{{b + c}}{a} = \dfrac{{1 + 0}}{3} = \dfrac{1}{3}\).

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay