Câu hỏi
Trong không gian với hệ tọa độ Oxy, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và
mặt phẳng \(\left( P \right):\,\,2x + 3y + z - 17 = 0\).
- A \(M\left( {0;0; - 3} \right)\)
- B \(M\left( {0;0;3} \right)\)
- C \(M\left( {0;0; - 4} \right)\)
- D \(M\left( {0;0;4} \right)\)
Phương pháp giải:
- Gọi \(M\left( {0;0;m} \right) \in Oz\).
- Điểm M cách đều điểm A và mặt phẳng \(\left( P \right)\)\( \Leftrightarrow MA = d\left( {M;\left( P \right)} \right)\).
- Sử dụng các công thức \(MA = \sqrt {{{\left( {{x_A} - {x_M}} \right)}^2} + {{\left( {{y_A} - {y_M}} \right)}^2} + {{\left( {{z_A} - {z_M}} \right)}^2}} \)
- Khoảng cách từ \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là
\(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
Lời giải chi tiết:
Gọi \(M\left( {0;0;m} \right) \in Oz\).
Ta có: \(MA = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 3} \right)}^2} + {{\left( {m - 4} \right)}^2}} = \sqrt {{{\left( {m - 4} \right)}^2} + 13} \).
\(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {m - 17} \right|}}{{\sqrt {{2^2} + {3^2} + {1^2}} }} = \dfrac{{\left| {m - 17} \right|}}{{\sqrt {14} }}\)
Vì M cách đều điểm A và mặt phẳng \(\left( P \right)\)\( \Leftrightarrow MA = d\left( {M;\left( P \right)} \right)\).
\(\begin{array}{l} \Leftrightarrow \sqrt {{{\left( {m - 4} \right)}^2} + 13} = \dfrac{{\left| {m - 17} \right|}}{{\sqrt {14} }}\\ \Leftrightarrow 14\left( {{m^2} - 8m + 16 + 13} \right) = {m^2} - 34m + 289\\ \Leftrightarrow 13{m^2} - 78m + 117 = 0\\ \Leftrightarrow 13\left( {{m^2} - 6m + 9} \right) = 0\\ \Leftrightarrow 13{\left( {m - 3} \right)^2} = 0\\ \Leftrightarrow m = 3.\end{array}\)
Vậy \(M\left( {0;0;3} \right)\).
Chọn B.