Câu hỏi
Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm \(M\left( {2; - 3;4} \right)\) và có vecto pháp tuyến \(\overrightarrow n = \left( { - 2;4;1} \right)\) là
- A \(2x - 4y - z - 12 = 0.\)
- B \(2x - 3y + 4z - 12 = 0\)
- C \(2x - 4y - z + 12 = 0\)
- D
\(2x - 3y + 4z + 12 = 0\)
Phương pháp giải:
Mặt phẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) có phương trình \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).
Lời giải chi tiết:
Mặt phẳng đi qua \(M\left( {2; - 3;4} \right)\) và có vecto pháp tuyến \(\overrightarrow n = \left( { - 2;4;1} \right)\) có phương trình là
\( - 2\left( {x - 2} \right) + 4\left( {y + 3} \right) + \left( {z - 4} \right) = 0 \Leftrightarrow 2x - 4y - z - 12 = 0\)
Chọn A.