Câu hỏi

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình bên. Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} + 3{x^2}} \right)\) là:

  • A \(5\)
  • B \(3\)
  • C \(7\)
  • D \(11\)

Phương pháp giải:

- Tính đạo hàm của hàm số \(g\left( x \right)\).

- Giải phương trình \(g'\left( x \right) = 0\) và kết luận số cực trị của hàm số.

Lời giải chi tiết:

Ta có: \(g'\left( x \right) = \left( {3{x^2} + 6x} \right)f'\left( {{x^3} + 3{x^2}} \right)\).

Cho \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}3{x^2} + 6x = 0\\f'\left( {{x^3} + 3{x^2}} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\\f'\left( {{x^3} + 3{x^2}} \right) = 0\,\,\,\left( * \right)\end{array} \right.\)

Dựa vào đồ thị hàm số ta thấy phương trình (*) tương đương với: \(\left[ \begin{array}{l}{x^3} + 3{x^2} = a < 0\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{x^3} + 3{x^2} = b \in \left( {0;4} \right)\,\,\,\left( 2 \right)\\{x^3} + 3{x^2} = c < 0\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\end{array} \right.\)

Xét hàm số \(y = {x^3} + 3{x^2}\) ta có: \(y' = 3{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\end{array} \right.\).

BBT:

Dựa vào BBT ta thấy:

+ Phương trình (1) có 1 nghiệm khác \(0; - 2.\)

+ Phương trình (2) có 3 nghiệm phân biệt khác \(0; - 2.\)

+ Phương trình (3) có 1 nghiệm khác \(0; - 2.\)

Do đó phương trình \(f'\left( x \right) = 0\) có 7 nghiệm đơn phân biệt.

Vậy hàm số \(y = g\left( x \right)\) có 7 cực trị.

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay