Câu hỏi

Với những giá trị nào của \(m\) thì đường thẳng \(\left( \Delta  \right):\,\,3x + 4y + 3 = 0\) tiếp xúc với đường tròn \(\left( C \right):\,\,{(x - m)^2} + {y^2} = 9\)?

  • A \(m = 0\) và \(m = 1\)              
  • B \(m = 4\) \(m =  - 6\)           
  • C \(m = 2\)                      
  • D \(m = 6\)

Phương pháp giải:

Để đường thẳng \(\left( \Delta  \right)\) tiếp xúc với đường tròn \(\left( C \right)\) thì khoảng cách từ tâm \(I\) của đường tròn \(\left( C \right)\) đến đường thẳng \(\left( \Delta  \right)\) bằng bán kính  của đường tròn \(\left( C \right)\).

Lời giải chi tiết:

Đường tròn \(\left( C \right):\,\,{(x - m)^2} + {y^2} = 9\) có tâm \(I\left( {m;\,\,0} \right)\) và bán kính \(R = 3.\)

Đường thẳng tiếp xúc với đường tròn khi và chỉ khi \(d\left ( I;\Delta  \right ) = R = 3.\)

\( \Rightarrow \frac{{\left| {3m + 3} \right|}}{5} = 3 \Leftrightarrow \left| {3m + 3} \right| = 15 \Leftrightarrow \left[ \begin{array}{l}3m + 3 = 15\\3m + 3 =  - 15\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3m = 12\\3m =  - 18\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 4\\m =  - 6\end{array} \right.\)

Vậy \(m = 4\)và \(m =  - 6\).

Chọn  B


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay