Câu hỏi

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(K\) là trung điểm của \(SC\). Mặt phẳng qua \(AK\) cắt các cạnh \(SB,\,\,SD\) lần lượt tại \(M,\,\,N\). Gọi \({V_1},\,\,V\) thứ tự là thể tích của khối chóp \(S.AMKN\) và khối chóp \(S.ABCD\). Giá trị nhỏ nhất của tỷ số \(\dfrac{{{V_1}}}{V}\) bằng

  • A \(\dfrac{1}{2}\)
  • B \(\dfrac{2}{3}\)
  • C \(\dfrac{3}{8}\)
  • D \(\dfrac{1}{3}\)

Phương pháp giải:

- Xác định các điểm \(M,\,\,N\).

- Đặt \(\dfrac{{SM}}{{SB}} = x,\,\,\,\dfrac{{SN}}{{SD}} = y\), tính tỉ số thể tích \(\dfrac{{{V_1}}}{V}\) bằng 2 cách theo \(x,\,\,y\).

- Rút \(x\) theo \(y\) hoặc ngược lại, tỉ số thể tích \(\dfrac{{{V_1}}}{V}\) lúc này chỉ được tính theo 1 ẩn \(x\) hoặc \(y\), sử dụng phương pháp hàm số để tìm GTNN của hàm số.

Lời giải chi tiết:

Gọi mặt phẳng chứa \(AK,\) cắt \(SB,\,\,SD\) lần lượt tại \(M,\,\,N\) là \(\left( \alpha  \right)\) .

Trong \(\left( {SAC} \right)\) gọi \(I = AC \cap SO\).

Trong \(\left( {SBD} \right)\), lấy \(M \in SB\), nối \(MI\) cắt \(SD\) tại \(N\).

Khi đó ta có \(\left( \alpha  \right) \equiv \left( {AMKN} \right)\).

Đặt: \(\dfrac{{SM}}{{SB}} = x,\,\,\,\dfrac{{SN}}{{SD}} = y.\)

Ta có:

\(\begin{array}{l}\dfrac{{{V_1}}}{V} = \dfrac{{{V_{SAMNK}}}}{{{V_{SABCD}}}} = \dfrac{1}{2}.\dfrac{{{V_{SAMK}} + {V_{SANK}}}}{{{V_{SABC}}}}\\\,\,\,\,\,\, = \dfrac{1}{2}.\left( {\dfrac{{SM}}{{SB}}.\dfrac{{SK}}{{SC}} + \dfrac{{SN}}{{SD}}.\dfrac{{SK}}{{SC}}} \right) = \dfrac{1}{4}\left( {x + y} \right)\end{array}\)

Lại có:  

\(\begin{array}{l}\dfrac{{{V_1}}}{V} = \dfrac{{{V_{S.AMKN}}}}{{{V_{S.ABCD}}}} = \dfrac{1}{2}.\dfrac{{{V_{SAMN}} + {V_{SKMN}}}}{{{V_{SABD}}}}\\\,\,\,\,\,\,\, = \dfrac{1}{2}\left( {\dfrac{{SM}}{{SB}}.\dfrac{{SN}}{{SD}} + \dfrac{{SK}}{{SC}}.\dfrac{{SM}}{{SB}}.\dfrac{{SN}}{{SD}}} \right)\\\,\,\,\,\,\,\, = \dfrac{{SM}}{{SB}}.\dfrac{{SN}}{{SD}}.\left( {\dfrac{1}{2} + \dfrac{1}{2}.\dfrac{{SK}}{{SC}}} \right) = \dfrac{3}{4}xy\end{array}\)

Từ đó ta có: \( \Rightarrow \dfrac{3}{4}xy = \dfrac{1}{4}\left( {x + y} \right)\)\( \Rightarrow x + y = 3xy \Leftrightarrow x = y\left( {3x - 1} \right)\)\( \Rightarrow y = \dfrac{x}{{3x - 1}}\).

Do \(x,\,\,y > 0 \Rightarrow 3x - 1 > 0 \Leftrightarrow x > \dfrac{1}{3}\).

Khi đó ta có: \(\dfrac{{{V_1}}}{V} = \dfrac{3}{4}xy = \dfrac{3}{4}.\dfrac{{{x^2}}}{{3x - 1}}\) với \(x > \dfrac{1}{3}\).

Đặt \(f\left( x \right) = \dfrac{{{x^2}}}{{3x - 1}}\) ta có:

\(\begin{array}{l}f'\left( x \right) = \dfrac{{2x\left( {3x - 1} \right) - 3{x^2}}}{{{{\left( {3x - 1} \right)}^2}}} = \dfrac{{x\left( {3x - 2} \right)}}{{{{\left( {3x - 1} \right)}^2}}}\\f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\left( {ktm} \right)\\x = \dfrac{2}{3}\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Bảng biến thiên:

Dựa vào BBT ta thấy: \(\mathop {\min }\limits_{\left( {\dfrac{1}{3}; + \infty } \right)} f\left( x \right) = f\left( {\dfrac{2}{3}} \right) = \dfrac{4}{9}\).

Vậy giá trị nhỏ nhất của \(\dfrac{{{V_1}}}{V}\) là \(\dfrac{3}{4}.\dfrac{4}{9} = \dfrac{1}{3}\), đạt được khi \(\dfrac{{SM}}{{SB}} = \dfrac{{SN}}{{SD}} = \dfrac{2}{3}\).

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay