Câu hỏi

Rút gọn biểu thức: \(T = \dfrac{{\left( {\sqrt {2a}  - 2\sqrt 2 } \right)\left( {a - 1} \right)}}{{a - \sqrt a  - 2}}\left( {a > 0;a \ne 4} \right)\)

  • A \(T = \left( {\sqrt a  + 1} \right)\).
  • B \(T = \left( {\sqrt a  - 1} \right)\).
  • C \(T = \sqrt 2 \left( {\sqrt a  + 1} \right)\).
  • D \(T = \sqrt 2 \left( {\sqrt a  - 1} \right)\).

Phương pháp giải:

Phân tích tử và mẫu thành nhân tử rồi rút gọn.

Lời giải chi tiết:

\(\begin{array}{l}T = \dfrac{{\left( {\sqrt {2a}  - 2\sqrt 2 } \right)\left( {a - 1} \right)}}{{a - \sqrt a  - 2}}\,\,\,\,\left( {a > 0;a \ne 4} \right)\\ = \dfrac{{\sqrt 2 \left( {\sqrt a  - 2} \right)\left( {\sqrt a  - 1} \right)\left( {\sqrt a  + 1} \right)}}{{\left( {\sqrt a  - 2} \right)\left( {\sqrt a  + 1} \right)}}\\ = \sqrt 2 \left( {\sqrt a  - 1} \right)\end{array}\)

Vậy \(T = \sqrt 2 \left( {\sqrt a  - 1} \right)\).


Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay