Câu hỏi
Cho hàm số \(y = \dfrac{{x + 1}}{{x - 1}}\). Tìm phương trình tiếp tuyến với đồ thị hàm số tại điểm \(M\left( {2;3} \right).\)
- A \(y = 2x - 1\)
- B \(y = - 3x + 9\)
- C \(y = 3x - 3\)
- D \(y = - 2x + 7\)
Phương pháp giải:
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là:
\(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).
Lời giải chi tiết:
TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\). Ta có \(y' = \dfrac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}}\).
Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 1}}\) tại điểm \(M\left( {2;3} \right)\) có hệ số góc là \(k = y'\left( 2 \right) = \dfrac{{ - 2}}{{{{\left( {2 - 1} \right)}^2}}} = - 2.\)
Vậy phương trình tiếp tuyến của đồ thị hàm số tại \(M\left( {2;3} \right)\) là: \(y = - 2\left( {x - 2} \right) + 3 \Leftrightarrow y = - 2x + 7.\)
Chọn D.