Câu hỏi

Có 10 bạn học sinh xếp ngẫu nhiên thành một hàng dọc. Tính xác suất để 3 bạn Hoa, Mai, Lan đứng cạnh nhau.

  • A \(\dfrac{1}{5}\)
  • B \(\dfrac{1}{{15}}\)
  • C \(\dfrac{{11}}{{15}}\)
  • D \(\dfrac{3}{5}\)

Phương pháp giải:

Sử dụng quy tắc buộc.

Lời giải chi tiết:

Xếp 10 bạn thành 1 hàng dọc có \(10!\) cách xếp.

Gọi A là biến cố: “3 bạn Hoa, Mai, Lan đứng cạnh nhau”.

Buộc 3 bạn Hoa, Mai,Lan vào 1 nhóm suy ra có 3! cách sắp xếp 3 bạn.

Coi 3 bạn này là 1 bạn, với 7 bạn còn lại, ta có 8! cách xếp 8 bạn này.

\( \Rightarrow n\left( A \right) = 3!8!\).

Vậy xác suất để 3 bạn Hoa,Mai,Lan đứng cạnh nhau là\(P = \dfrac{{3!.8!}}{{10!}} = \dfrac{1}{{15}}.\)

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay