Câu hỏi

Tìm hệ số của \({x^5}\) trong khai triển \(P\left( x \right) = \left( {1 + x} \right) + 2{\left( {1 + x} \right)^2} + ... + 8{\left( {1 + x} \right)^8}\)

  • A \(630\)
  • B \(635\)
  • C \(636\)
  • D \(637\)

Lời giải chi tiết:

+\(P\left( x \right) = \left( {1 + x} \right) + 2{\left( {1 + x} \right)^2} + ... + 8{\left( {1 + x} \right)^8}\)

+ Ta lấy \(n{\left( {1 + x} \right)^n}\) là số hạng đại điện cho các số hạng trong \(P(x)\)

+ Số hạng tổng quát trong khai triển: \(T_{k + 1}^{} = n.\left( {C_n^k{{.1}^{n - k}}.{x^k}} \right) = nC_n^k{x^k}\)

Do \({x^5}\) chỉ xuất hiện ở các số hạng \(5{\left( {1 + x} \right)^5},6{\left( {1 + x} \right)^6},7{\left( {1 + x} \right)^7},8{\left( {1 + x} \right)^8}\)

+ Số hạng chứa \({x^5}\) trong khai triển \(5{\left( {1 + x} \right)^5}\)ứng với \(\left\{ \begin{array}{l}k = 5\\n = 5\end{array} \right.\)

\( \Rightarrow \) Hệ số của số hạng chứa \({x^5}\) là: \(5C_5^5\)

+ Số hạng chứa \({x^5}\) trong khai triển \(6{\left( {1 + x} \right)^6}\)ứng với \(\left\{ \begin{array}{l}k = 5\\n = 6\end{array} \right.\)

\( \Rightarrow \) Hệ số của số hạng chứa \({x^5}\) là: \(6C_6^5\)

Tương tự hệ số của \({x^5}\) trong các số hạng còn lại là:\(7C_7^5,8C_8^5\)

 Vậy tổng các hệ số là: \(5C_5^5 + 6C_6^5 + 7C_7^5 + 8C_8^5 = 636\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay