Câu hỏi

Tìm số hạng không chứa x trong khai triển \({\left( {x{y^2} - \dfrac{1}{{xy}}} \right)^8}\)

  • A \(70{y^4}\)
  • B \(60{y^4}\)
  • C \(50{y^4}\)
  • D \(40{y^4}\)

Lời giải chi tiết:

+ Số hạng tổng quát của \({\left( {x{y^2} - \dfrac{1}{{xy}}} \right)^8}\)là:  \(T_{k + 1}^{} = C_8^k.{(x{y^2})^{8 - k}}{\left( {\dfrac{{ - 1}}{{xy}}} \right)^k} = C_6^k.{\left( { - 1} \right)^k}.{x^{8 - 2k}}.{y^{16 - 3k}}\)

+Số hạng không chứa x ứng với: \({x^{8 - 2k}} = {x^0} \Rightarrow k = 4\)

+Số hạng không chứa x là: \(C_8^4.{\left( { - 1} \right)^4}.{x^0}.{y^{16 - 3.4}} = 70{y^4}\)

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay