Câu hỏi
Trong một hộp có 10 viên bi đỏ có bán kính khác nhau, 5 viên bi xanh có bán kính khác nhau và 3 viên bi vàng có bán kính khác nhau. Lấy ngẫu nhiên từ hộp đó ra 9 viên bi. Tính xác suất để 9 viên lấy ra có đủ cả 3 màu?
- A \(\dfrac{{46157}}{{59236}}.\)
- B \(\dfrac{{42910}}{{48620}}\)
- C \(\dfrac{{59682}}{{27638}}\)
- D
\(\dfrac{{35698}}{{29164}}\)
Lời giải chi tiết:
+) Gọi KGM là “lấy ngẫu nhiên 9 viên bi” \( \Rightarrow {n_\Omega } = C_{18}^9 = 48620\)
+) Gọi A: “Biến cố lấy đủ cả 3 màu” \( \Rightarrow \overline A \): “Biến cố không lấy đủ 3 màu”
TH1: Chỉ lấy được một màu đỏ: \(C_{10}^9 = 10\) (cách)
TH2: Chỉ lấy được màu đỏ và xanh:\(C_5^5.C_{10}^4 + C_5^4.C_{10}^5 + C_5^3.C_{10}^6 + C_5^2.C_{10}^7 + C_5^1.C_{10}^8\)= 4995 (cách)
TH3: Chỉ lấy được màu đỏ và vàng: \(C_3^3.C_{10}^6 + C_{C3}^2.C_{10}^7 + C_3^1.C_{10}^8 = 705\) (cách)
\(\begin{array}{l} \Rightarrow {n_{\overline A }} = 10 + 4995 + 705 = 5710\\ \Rightarrow {P_{\left( A \right)}} = 1 - {P_{\left( {\overline A } \right)}} = 1 - \dfrac{{5710}}{{48620}} = \dfrac{{42910}}{{48620}}\end{array}\)
Chọn B.