Câu hỏi

Khí hiệu \({P_n}\) là số hoán vị của n phần tử của một tập hợp A có n phần tử cho trước  (tức là \({P_n} = n!\)). Nếu \({P_n} = 2007.{P_{n - 1}}\)  thì giá trị của \(n\) là bao nhiêu ?

  • A \(n = 2\)
  • B \(n = 2006\)
  • C \(n = 2007\)
  • D \(n = 2008\)

Lời giải chi tiết:

\({P_n} = 2007.{P_{n - 1}}\)\(\left( {n > 1;\,\,n \in N} \right)\)

\( \Leftrightarrow n! = 2007.\left( {n - 1} \right)!\)

\( \Leftrightarrow \dfrac{{n!}}{{\left( {n - 1} \right)!}} = 2007\)

\( \Leftrightarrow \dfrac{{\left( {n - 1} \right)!n}}{{\left( {n - 1} \right)!}} = 2007\)

\( \Leftrightarrow n = 2007\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay