Môn Lý - Lớp 12
50 bài tập Công suất tiêu thụ của mạch điện xoay chiều. Hệ số công suất mức độ vận dụng cao
Câu hỏi
Một đoạn mạch gồm điện trở thuần R, cuộn dây cảm thuần có độ tự cảm L, tụ điện có điện dung C thay đổi được mắc nối tiếp. Đặt vào hai đầu đoạn mạch một điện áp xoay chiều \(u = U\sqrt 2 .\cos \left( {100\pi t} \right)V\). Khi C = C1thì công suất tiêu thụ của mạch là P = 100W và cường độ dòng điện qua mạch có biểu thức \(i = {I_0}.\cos \left( {100\pi t + \frac{\pi }{3}} \right)A\). Khi C = C2, công suất tiêu thụ của mạch đạt cực đại. Giá trị cực đại đó là:
- A 100 W
- B 400 W
- C 200 W
- D 150 W.
Phương pháp giải:
Công suất tiêu thụ : \(P = {I^2}.R = \frac{{{U^2}.R}}{{{R^2} + {{({Z_L} - {Z_C})}^2}}}\)
Độ lệch pha giữa u và i được xác định :
\(\tan \varphi = \frac{{{Z_L} - {Z_C}}}{R}\)
Thay đổi C để P cực đại thì tức là xảy ra cộng hưởng, khi đó
\({P_{\max }} = \frac{{{U^2}}}{R}\)
Lời giải chi tiết:
Khi C = C1 thì độ lệch pha giữa u và i được xác định:
\(\begin{array}{l}
\tan \varphi = \frac{{{Z_L} - {Z_{{C_1}}}}}{R} \Rightarrow \tan \frac{{ - \pi }}{3} = \frac{{{Z_L} - {Z_C}_1}}{R} = - \sqrt 3 \\
\Rightarrow {Z_L} - {Z_{{C_1}}} = - \sqrt 3 .R
\end{array}\)
Áp dụng công thức tính công suất:
\(\begin{array}{l}
P = {I^2}.R = \frac{{{U^2}.R}}{{{R^2} + {{({Z_L} - {Z_{{C_1}}})}^2}}} \Rightarrow 100 = \frac{{{U^2}.R}}{{{R^2} + {{({Z_L} - {Z_{C1}})}^2}}}\\
\Rightarrow 100 = \frac{{{U^2}.R}}{{{R^2} + {{( - \sqrt 3 R)}^2}}} = \frac{{{U^2}}}{{4.R}}
\end{array}\)
Thay đổi C để P cực đại thì tức là xảy ra cộng hưởng, khi đó:
\({P_{\max }} = \frac{{{U^2}}}{R} = 4.\frac{{{U^2}}}{{4.R}} = 4.100 = 400{\rm{W}}\)
Chọn B.