Câu hỏi

Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) tại điểm có hoành độ bằng 1 là:

  • A \(y =  - 3x  + 3\)
  • B \(y = 3x + 3\)
  • C \(y =  - 3x - 3\)
  • D \(y = 3x - 3\)

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là:

\(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)

Lời giải chi tiết:

TXĐ: \(D = \mathbb{R}\).

Ta có: \(y' = 3{x^2} - 6x\)\( \Rightarrow y'\left( 1 \right) =  - 3\) và \(y\left( 1 \right) = 0\).

Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng \(1\) là:

\(y =  - 3\left( {x - 1} \right) + 0\) \( \Leftrightarrow y =  - 3x + 3\).

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay