Câu hỏi
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} + x} \right)\left( {{x^2} - 3x - 4} \right)\). Gọi \(T\) là tập hợp các giá trị nguyên của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {{x^2} - 6x + 2m} \right)\) có đúng 5 cực trị. Tính tổng \(S\) các phần tử của tập hợp \(T\), biết \(m \in \left( { - 19;20} \right]\).
- A \(S = 200\)
- B \(S = - 161\)
- C \(S = 189\)
- D \(S = 150\)
Phương pháp giải:
- Tính đạo hàm của hàm số \(g\left( x \right)\).
- Tìm điều kiện để phương trình \(g'\left( x \right) = 0\) có 5 nghiệm bội lẻ phân biệt.
Lời giải chi tiết:
Ta có: \(f'\left( x \right) = 0 \Leftrightarrow {\left( {x + 1} \right)^2}x\left( {x - 4} \right)\).
Xét hàm số \(y = g\left( x \right)\) có: \(g'\left( x \right) = \left( {2x - 6} \right)f'\left( {{x^2} - 6x + 2m} \right)\).
\( \Rightarrow g'\left( x \right) = \left( {2x - 6} \right){\left( {{x^2} - 6x + 2m + 1} \right)^2}\left( {{x^2} - 6x + 2m} \right)\left( {{x^2} - 6x + 2m - 4} \right)\)
\(g'\left( x \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 3\\{x^2} - 6x + 2m = 0\\{x^2} - 6x + 2m = 4\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 3\\{x^2} - 6x + 2m = 0\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{x^2} - 6x + 2m - 4 = 0\,\,\,\left( 2 \right)\end{array} \right.\) .
(Ta không xét phương trình \({x^2} - 6x + 2m = - 1\) vì qua các nghiệm của phương trình này \(g'\left( x \right)\) không đổi dấu).
Để hàm số \(y = g\left( x \right)\) có đúng 5 điểm cực trị thì phương trình (1) và (2), mỗi phương trình có 2 nghiệm phân biệt khác 3.
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta {'_1} = 9 - 2m > 0\\{\Delta _2}' = 9 - 2m + 4 > 0\\ - 9 + 2m \ne 0\\ - 8 + 2m - 4 \ne 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m < \frac{9}{2}\\m < \frac{{13}}{2}\end{array} \right. \Leftrightarrow m < \frac{9}{2}\).
Kết hợp điều kiện \( \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left( { - 19;\frac{9}{2}} \right)\end{array} \right.\) \( \Rightarrow T = \left\{ { - 18; - 17;...;3;4} \right\}\).
Vậy \(S = \left( { - 18} \right) + \left( { - 17} \right) + ... + \left( { - 1} \right) + 0 + 1 + 2 + 3 + 4\)
\(S = - \frac{{18.19}}{2} + \frac{{4.5}}{2} = - 161\).
Chọn B.