Câu hỏi

Tìm số nguyên tố \(p\) sao cho \(2{p^2} - 3,\,\,2{p^2} + 3\) đều là số nguyên tố.

  • A \(p=2,p=3\)
  • B \(p=3\)
  • C \(p=2,p=5\)
  • D \(p=3,p=5\)

Phương pháp giải:

+) Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có 2 ước là 1 và chính nó.

+) Tính chất: Nếu \(a\) chia hết cho số nguyên tố \(p\) và \(a > p\) thì \(a\) là hợp số.

Lời giải chi tiết:

Với \(p = 2 \Rightarrow 2{p^2} - 3 = {2.2^2} - 3 = 5;\)\(2{p^2} + 3 = {2.2^2} + 3 = 11\) đều là số nguyên tố.

Với \(p = 3 \Rightarrow 2{p^2} - 3 = {2.3^2} - 3 = 15\) không là số nguyên tố.

Với \(p = 5 \Rightarrow 2{p^2} - 3 = {2.5^2} - 3 = 47;\)\(2{p^2} + 3 = {2.5^2} + 3 = 53\) đều là số nguyên tố.

Với \(p > 5 \Rightarrow p = 5k \pm 1;\,\,p = 5k \pm 2\,\,\,\left( {k \in \mathbb{N}} \right)\)

+) Với \(p = 5k \pm 1 \Rightarrow 2{p^2} + 3 = 2{\left( {5k \pm 1} \right)^2} + 3\)\( = 50{k^2} \pm 20k + 5 > 5\) và chia hết cho 5 nên là hợp số

+) Với \(p = 5k \pm 2 \Rightarrow 2{p^2} - 3 = 2{\left( {5k \pm 2} \right)^2} - 3\)\( = 50{k^2} \pm 40k + 5 > 5\) và chia hết cho 5 nên là hợp số

Vậy \(p = 2,\,\,p = 5\) thỏa mãn yêu cầu đề bài.

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay