Câu hỏi

Cho hàm số \(f\left( x \right) = {\sin ^6}x + {\cos ^6}x\) và \(g\left( x \right) = 3{\sin ^2}x.{\cos ^2}x.\) Tổng \(f'\left( x \right) + g'\left( x \right)\) bằng biểu thức nào sau đây?

  • A \(6\left( {{{\sin }^5} + {{\cos }^5} + \sin x.\cos x} \right)\)        
  • B \(6\)
  • C \(6\left( {{{\sin }^5} - {{\cos }^5} - \sin x.\cos x} \right)\)    
  • D \(0\)  

Phương pháp giải:

Sử dụng các công thức đạo hàm của hàm hợp và hàm số lượng giác.

Lời giải chi tiết:

Ta có: \(f\left( x \right) = {\sin ^6}x + {\cos ^6}x\)

\(\begin{array}{l} \Rightarrow f'\left( x \right) = 6{\sin ^5}x\cos x - 6{\cos ^5}x\sin x\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6\sin x\cos x\left( {{{\sin }^4}x - {{\cos }^4}x} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6\sin x\cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\left( {{{\sin }^2}x - {{\cos }^2}x} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6\sin x\cos x\left( {{{\sin }^2}x - {{\cos }^2}x} \right).\\g\left( x \right) = 3{\sin ^2}x{\cos ^2}x\\ \Rightarrow g'\left( x \right) = 6\sin x{\cos ^3}x - 6\cos x{\sin ^3}x\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6\sin x\cos x\left( {{{\cos }^2}x - {{\sin }^2}x} \right).\end{array}\) 

\( \Rightarrow f'\left( x \right) + g'\left( x \right) = 6\sin x\cos x\left( {{{\sin }^2}x - {{\cos }^2}x} \right)\)\( - 6\sin x\cos x\left( {{{\cos }^2}x - {{\sin }^2}x} \right) = 0.\) 

Chọn D. 


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay