Câu hỏi

Cho tập hợp \(A = \left\{ {0;1;2;3;4;5} \right\}\). Có thể lập bao nhiêu số tự nhiên có 4 chữ số khác nhau từ \(A\).

  • A 752.
  • B 160.
  • C 156.
  • D 240.

Phương pháp giải:

Sử dụng quy tắc nhân và quy tắc cộng.

Lời giải chi tiết:

Gọi số cần tìm là \(\overline {abcd} \)\(\left( {a \ne 0} \right)\)

Để số cần tìm là số chẵn thì \(d \in \left\{ {0;2;4} \right\}\)

+) \(d = 0\) khi đó:

a có 5 cách chọn

b có 4 cách chọn

c có 3 cách chọn.

Khi đó có 5.4.3=60 số thỏa mãn.

+) \(d \in \left\{ {2;4} \right\}\) khi đó

a có 4 cách chọn

b có 4 cách chọn

c có 3 cách chọn.

khi đó có 4.4.3.2=96 số thỏa mãn.

Vậy có tất cả \(60 + 96 = 156\) số.

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay