Câu hỏi

Tìm tập các giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{{{x^3}}}{3} - m{x^2} + \left( {{m^2} - m} \right)x + 2019\) có hai điểm cực trị \({x_1},\,{x_2}\) thỏa mãn \({x_1}.{x_2} = 2.\)

  • A \(\emptyset .\)
  • B \(\left\{ 2 \right\}.\)
  • C \(\left\{ { - 1} \right\}.\)
  • D \(\left\{ { - 1;2} \right\}.\)

Phương pháp giải:

Tính \(y'\).

Tìm ĐK để \(y' = 0\) có hai nghiệm phân biệt thỏa mãn \({x_1}{x_2} = 2\).

Lời giải chi tiết:

Ta có: \(y' = {x^2} - 2mx + {m^2} - m\)

Hàm số đã cho có hai điểm cực trị \( \Leftrightarrow y' = 0\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' = {m^2} - {m^2} + m > 0 \Leftrightarrow m > 0\)

Khi đó \({x_1}{x_2} = 2 \Leftrightarrow {m^2} - m = 2\) \( \Leftrightarrow {m^2} - m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m =  - 1\left( {loai} \right)\\m = 2\left( {TM} \right)\end{array} \right.\)

Vậy \(m = 2\).

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay