Câu hỏi

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(AB = 3a,\,\,AD = 4a\), \(SA\) vuông góc với mặt đáy, \(SC\) tạo với mặt phẳng đáy một góc \({60^0}\). Tính bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABCD\) theo \(a\).

  • A \(10a\)
  • B \(5a\)
  • C \(\dfrac{{5\sqrt 3 a}}{2}\)  
  • D \(5\sqrt 3 a\)  

Phương pháp giải:

Tìm tâm của mặt cầu ngoại tiếp khối chóp bằng cách :

          - Tìm tâm \(O\)  của đường tròn ngoại tiếp đa giác đáy.

          - Kẻ đường thẳng \(d\) đi qua tâm \(O\) và vuông góc với mặt phẳng đáy.

          - Vẽ mặt phẳng \(\left( P \right)\) là mặt phẳng trung trực của một cạnh bên bất kì.

          - \(I = \left( P \right) \cap d\) là tâm mặt cầu ngoại tiếp khối chóp.

Lời giải chi tiết:

Gọi \(O\) là giao điểm của \(AC\) và \(BD\),  \(I\) là trung điểm cạnh \(SC\).

Do \(ABCD\) là hình chữ nhật nên \(O\) là giao điểm 2 đường chéo cũng chình là tâm đường tròn ngoại tiếp hcn \(ABCD\) (do \(OA = OB = OC = OD\)).

\(OI\) là đường trung bình trong tam giác \(SAC\) nên \(OI//SA\) mà \(SA\) vuông góc với mp \(\left( {ABCD} \right)\) nên \(OI\) cũng vuông góc với mp \(\left( {ABCD} \right)\)

Do đó \(IA = IB = IC = ID\) (do \(I\) nằm trên đường thẳng đi qua tâm \(O\) và vuông góc với đáy).

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC \Rightarrow \) Tam giác \(SAC\) vuông tại \(A\) có trung tuyến \(AI\) nên \(IA = IS = IC\).

\( \Rightarrow IA = IB = IC = ID = IS\) hay \(I\) là tâm mặt cầu ngoại tiếp khối chóp \(S.ABCD\).

\(SA\) vuông góc với đáy nên góc tạo bởi \(SC\) và mặt phẳng đáy chính là góc \(\angle SCA \Rightarrow \angle SCA = {60^0}\).

\(AC = \sqrt {A{B^2} + B{C^2}}  = 5a;\,\,\,SC = \dfrac{{AC}}{{\cos \widehat {SCA}}} = \dfrac{{5a}}{{\cos 60^\circ }} = 10a\).

Do đó \(R = IS = \dfrac{1}{2}SC = 5a\).

Vậy bán kính mặt cầu ngoại tiếp khối chóp bằng \(5a\).

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay