Môn Lý - Lớp 12
50 bài tập Tổng hợp hai dao động điều hòa cùng phương, cùng tần số - Phương pháp giản đồ Frenen mức độ vận dụng cao
Câu hỏi
Hai con lắc lò xo giống hệt nhau được treo vào hai điểm ở cùng độ cao, cách nhau 3cm. Kích thích cho hai con lắc dao động điều hòa theo phương thẳng đứng với phương trình lần lượt là\(\;{x_1} = 3\cos \left( {\omega t} \right)cm\)và\(\;{x_2} = 6\cos \left( {\omega t + \dfrac{\pi }{3}} \right)cm\). Trong quá trình dao động, khoảng cách lớn nhất giữa hai vật nhỏ của các con lắc bằng
- A 5,2 cm
- B 9 cm
- C 8,5 cm
- D 6 cm
Phương pháp giải:
Khoảng cách giữa hai vật nhỏ trong quá trình dao động là: \(d = \sqrt {{3^2} + {{\left( {{x_2} - {x_1}} \right)}^2}} \)
Khoảng cách này lớn nhất là \({d_{\max }} \Leftrightarrow {\left( {{x_2} - {x_1}} \right)_{\max }}\)
Lời giải chi tiết:
Khoảng cách giữa hai vật nhỏ trong quá trình dao động là:
\(d = \sqrt {{3^2} + {{\left( {{x_2} - {x_1}} \right)}^2}} \)
Ta có: \({x_2} - {x_1} = 6\cos \left( {\omega t + \frac{\pi }{3}} \right) - 3\cos \left( {\omega t} \right)\)
\( \Leftrightarrow {x_2} - {x_1} = 3\sqrt 3 .\cos \left( {\omega t + \frac{\pi }{2}} \right)cm\)
Suy ra: \(\;{\left( {{x_2} - {x_1}} \right)_{\max }} = 3\sqrt 3 cm \Leftrightarrow \cos \left( {\omega t + \dfrac{\pi }{2}} \right) = 1\)
Vậy khoảng cách lớn nhất giữa hai vật nhỏ là:
\(d = \sqrt {{3^2} + {{\left( {3\sqrt 3 } \right)}^2}} = 6cm\)
Chọn D.