Câu hỏi
Tính tổng \(S = C_{2n}^0 + C_{2n}^1 + C_{2n}^2 + ... + C_{2n}^{2n}.\)
- A \(S = {2^{2n}}.\)
- B \(S = {2^{2n}} - 1.\)
- C \(S = {2^n}.\)
- D \(S = {2^{2n}} + 1.\)
Phương pháp giải:
Dùng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \).
Lời giải chi tiết:
Áp dụng nhị thức Newton ta có: \({\left( {x + 1} \right)^{2n}} = \sum\limits_{k = 0}^{2n} {C_{2n}^k} .{x^k}\)
Thay \(x = 1\) vào biểu thức ta được tổng các hệ số:
\(S = C_{2n}^0 + C_{2n}^1 + C_{2n}^2 + ... + C_{2n}^{2n} = {\left( {1 + 1} \right)^{2n}} = {2^{2n}}.\)
Chọn A.