Câu hỏi

Số các giá trị nguyên của \(m\) trong đoạn \(\left[ { - 2018;2018} \right]\) để hàm số \(f\left( x \right) = \left( {m + 1} \right)x + m - 2\) đồng biến trên \(\mathbb{R}\) là:

  • A \(2019\)
  • B \(4037\)
  • C \(4036\)
  • D \(2018\)

Phương pháp giải:

Hàm số \(y = ax + b\) đồng biến trên \(\mathbb{R} \Leftrightarrow a > 0.\)

Lời giải chi tiết:

Hàm số \(f\left( x \right) = \left( {m + 1} \right)x + m - 2\) đồng biến trên \(\mathbb{R} \Leftrightarrow m + 1 > 0 \Leftrightarrow m >  - 1.\)

Mà \(\left\{ \begin{array}{l}m \in \left[ { - 2018;\,\,2018} \right]\\m \in \mathbb{Z}\end{array} \right. \Rightarrow m \in \left\{ {0;\,\,1;\,\,2;......;\,\,2018} \right\} \Rightarrow \)  có \(2019\)  giá trị nguyên của \(m.\)

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay