Câu hỏi
Tìm số hạng không chứa \(x\) trong khai triển của biểu thức \({\left( {{x^2} - \dfrac{2}{{{x^2}}}} \right)^n}\)biết \(3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^{n - 1} + {3^n}C_n^n = 65535\) với \(n \in {N^*},\,\,x \ne 0\).
- A 1120.
- B -1120.
- C 112.
- D -112.
Phương pháp giải:
+) Tìm \(n\) thông qua dữ kiện đề bài cho.
+) Tìm hệ số không chứa \(x\) dựa vào khai triển nhị thức Newton.
Lời giải chi tiết:
Ta có :
\(\begin{array}{l}3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^{n - 1} + {3^n}C_n^n = 65535\\ \Leftrightarrow {3^0}C_n^0 + 3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^{n - 1} + {3^n}C_n^n = 65535 + {3^0}C_n^0\\ \Leftrightarrow {\left( {3 + 1} \right)^n} = 65536 \Leftrightarrow {4^n} = 65536 \Leftrightarrow n = 8.\end{array}\)
Khai triển với \(n = 8\) ta được:
\({\left( {{x^2} - \dfrac{2}{{{x^2}}}} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{\left( {{x^2}} \right)}^{8 - k}}.{{\left( { - 2} \right)}^k}.{{\left( {{x^{ - 2}}} \right)}^k}} = \sum\limits_{k = 0}^8 {{{\left( { - 2} \right)}^k}.C_8^k.{x^{16 - 4k}}} \)
Khi đó số hạng không chứa \(x\) ứng với:
\(16 - 4k = 0 \Leftrightarrow k = 4\), nên hệ số là: \({\left( { - 2} \right)^4}.C_8^4 = 1120.\)
Chọn A.