Câu hỏi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x + 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 1\\\frac{{{x^3} + 2{x^2} - 7x + 4}}{{x - 1}}\,\,khi\,\,x < 1\end{array} \right.\). Giá trị của \(f'\left( 1 \right)\) bằng:

  • A \(0\)
  • B \(4\)
  • C \(5\)
  • D không tồn tại

Phương pháp giải:

Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \(x = {x_0}\) là \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) (nếu tồn tại).

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x + 3 - 5}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - 2}}{{x - 1}} = 2\\\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\frac{{{x^3} + 2{x^2} - 7x + 4}}{{x - 1}} - 5}}{{x - 1}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^3} + 2{x^2} - 12x + 9}}{{{{\left( {x - 1} \right)}^2}}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {{x^2} + 3x - 9} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 3x - 9}}{{x - 1}} =  + \infty \\ \Rightarrow \mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} \ne \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\end{array}\)

Vậy hàm số không tồn tại đạo hàm tại x = 1.

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay