Câu hỏi

Tìm \(a,\,\,b \in \mathbb{Z}\), biết rằng \(a.b = 12\) và \(a + b =  - 7\).

  • A \(\left( {a;b} \right) = \left\{ {\left( { - 4; - 3} \right);\,\left( { - 3; - 4} \right)} \right\}\)
  • B \(\left( {a;b} \right) = \left\{ {\left( {4; - 3} \right);\,\left( { - 3;4} \right)} \right\}\)
  • C \(\left( {a;b} \right) = \left\{ {\left( { - 4;3} \right);\,\left( {3; - 4} \right)} \right\}\)
  • D \(\left( {a;b} \right) = \left\{ {\left( {4;3} \right);\,\left( {3;4} \right)} \right\}\)

Phương pháp giải:

+) Áp dụng quy tắc nhân hai số nguyên cùng dấu hoặc khác dấu suy ra dấu của hai số cần tìm.

+) Chọn giá trị để thỏa mãn điều kiện còn lại.

Lời giải chi tiết:

Cách 1:

Vì \(ab = 12 > 0 \Rightarrow \)\(a\) và \(b\) là hai số nguyên cùng dấu.

Mà  \(a + b =  - 7\) suy ra \(a\) và \(b\) cùng dấu âm.

\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a =  - 3\\b =  - 4\end{array} \right.\\\left\{ \begin{array}{l}a =  - 4\\b =  - 3\end{array} \right.\end{array} \right..\)

Vậy \(\left( {a;b} \right) = \left\{ {\left( { - 4; - 3} \right);\,\left( { - 3; - 4} \right)} \right\}\).

Cách 2:

Ta có: \(a + b =  - 7 \Rightarrow a =  - 7 - b\)

Thay \(a =  - 7 - b\) vào biểu thức \(ab = 12\) ta được: \(\left( { - 7 - b} \right).b = 12 \Rightarrow \left( {7 + b} \right).b =  - 12\)

Vậy \(\left( {a;b} \right) = \left\{ {\left( { - 4; - 3} \right);\,\left( { - 3; - 4} \right)} \right\}\).

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay