Câu hỏi

Tính bằng cách hợp lí:

Câu 1:

\(A = \left( { - 20} \right).5.\left( { - 6} \right).4.\left( { - 5} \right).250\)

  • A \(3000000\)
  • B \(-3000000\)
  • C \(2000000\)
  • D \(-2000000\)

Phương pháp giải:

+) Áp dụng quy tắc nhân số nguyên, nhóm các thừa số, số hạng để có kết quả tròn chục, trăm, nghìn.

+) Áp dụng tính chất giao hoán, kết hợp, phân phối của các số nguyên.

Lời giải chi tiết:

\(\begin{array}{l}A = \left( { - 20} \right).5.\left( { - 6} \right).4.\left( { - 5} \right).250\\\,\,\,\,\, = \left( {4.250} \right).\left[ {\left( { - 20} \right).5} \right].\left[ {\left( { - 6} \right).\left( { - 5} \right)} \right]\\\,\,\,\,\, = 1000.\left( { - 100} \right).30\\\,\,\,\,\, =  - 100000.30\\\,\,\,\,\, =  - 3000000\end{array}\)

Chọn B.


Câu 2:

\(B = \left( { - 167} \right).83 + 167.\left( { - 17} \right) - 33.100\)

  • A \(30000\)
  • B \(-30000\)
  • C \(20000\)
  • D \(-20000\)

Phương pháp giải:

+) Áp dụng quy tắc nhân số nguyên, nhóm các thừa số, số hạng để có kết quả tròn chục, trăm, nghìn.

+) Áp dụng tính chất giao hoán, kết hợp, phân phối của các số nguyên.

Lời giải chi tiết:

\(\begin{array}{l}B = \left( { - 167} \right).83 + 167.\left( { - 17} \right) - 33.100\\\,\,\,\,\, = 167.\left( { - 83} \right) + 167.\left( { - 17} \right) - 33.100\\\,\,\,\,\, = 167.\left[ {\left( { - 83} \right) + \left( { - 17} \right)} \right] - 33.100\\\,\,\,\,\, = 167.\left( { - 100} \right) - 33.100\\\,\,\,\,\, =  - 167.100 - 33.100\\\,\,\,\,\, = 100.\left( { - 167 - 33} \right)\\\,\,\,\,\, = 100.\left( { - 200} \right)\\\,\,\,\,\, =  - 20000\end{array}\)

Chọn D.


Câu 3:

\(C = \left( { - 25} \right).68 + \left( { - 34} \right).\left( { - 250} \right)\)

  • A \(6800\)
  • B \(3400\)
  • C \(-6800\)
  • D \(-3400\)

Phương pháp giải:

+) Áp dụng quy tắc nhân số nguyên, nhóm các thừa số, số hạng để có kết quả tròn chục, trăm, nghìn.

+) Áp dụng tính chất giao hoán, kết hợp, phân phối của các số nguyên.

Lời giải chi tiết:

\(\begin{array}{l}C = \left( { - 25} \right).68 + \left( { - 34} \right).\left( { - 250} \right)\\\,\,\,\,\, = \left( { - 25} \right).34.2 + 34.250\\\,\,\,\,\, = 34.\left[ {\left( { - 25} \right).2 + 250} \right]\\\,\,\,\,\, = 34.\left( { - 50 + 250} \right)\\\,\,\,\,\, = 34.200\\\,\,\,\,\, = 6800\end{array}\)

Chọn A.


Câu 4:

\(D = \left( {135 - 35} \right).\left( { - 47} \right) + 53.\left( { - 48 - 52} \right)\)

  • A \(10000\)
  • B \(-10000\)
  • C \(20000\)
  • D \(-20000\)

Phương pháp giải:

+) Áp dụng quy tắc nhân số nguyên, nhóm các thừa số, số hạng để có kết quả tròn chục, trăm, nghìn.

+) Áp dụng tính chất giao hoán, kết hợp, phân phối của các số nguyên.

Lời giải chi tiết:

\(\begin{array}{l}D = \left( {135 - 35} \right).\left( { - 47} \right) + 53.\left( { - 48 - 52} \right)\\\,\,\,\,\, = 100.\left( { - 47} \right) + 53.\left( { - 100} \right)\\\,\,\,\,\, = 100.\left( { - 47} \right) + \left( { - 53} \right).100\\\,\,\,\,\, = 100.\left[ {\left( { - 47} \right) + \left( { - 53} \right)} \right]\\\,\,\,\,\, = 100.\left( { - 100} \right)\\\,\,\,\,\, =  - 10000\end{array}\)

Chọn B.


Câu 5:

\(E = 25.\left( {75 - 49} \right) + 75.\left( {49 - 25} \right)\)

  • A \(5000\)
  • B \(-5000\)
  • C \(2450\)
  • D \(-2450\)

Phương pháp giải:

+) Áp dụng quy tắc nhân số nguyên, nhóm các thừa số, số hạng để có kết quả tròn chục, trăm, nghìn.

+) Áp dụng tính chất giao hoán, kết hợp, phân phối của các số nguyên.

Lời giải chi tiết:

\(\begin{array}{l}E = 25.\left( {75 - 49} \right) + 75.\left( {49 - 25} \right)\\\,\,\,\,\, = \left( {25.75 - 25.49} \right) + \left( {75.49 - 75.25} \right)\\\,\,\,\,\, = 25.75 - 25.49 + 75.49 - 75.25\\\,\,\,\,\, = \left( {25.75 - 75.25} \right) + \left( {75.49 - 25.49} \right)\\\,\,\,\,\, = 0 + \left( {75 - 25} \right).49\\\,\,\,\,\, = 50.49\\\,\,\,\,\, = 2450\end{array}\)

Chọn C.


Câu 6:

\(F = {2^{100}} - {2^{99}} - {2^{98}} -  \ldots  - {2^2} - 2 - 1\)

  • A \(0\)
  • B \(-1\)
  • C \(1\)
  • D \(2\)

Phương pháp giải:

+) Áp dụng quy tắc nhân số nguyên, nhóm các thừa số, số hạng để có kết quả tròn chục, trăm, nghìn.

+) Áp dụng tính chất giao hoán, kết hợp, phân phối của các số nguyên.

Lời giải chi tiết:

\(\begin{array}{l}F = {2^{100}} - {2^{99}} - {2^{98}} -  \ldots  - {2^2} - 2 - 1\\ \Rightarrow 2F = 2.\left( {{2^{100}} - {2^{99}} - {2^{98}} -  \ldots  - {2^2} - 2 - 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {2^{101}} - {2^{100}} - {2^{99}} -  \ldots  - {2^3} - {2^2} - 2\\ \Rightarrow 2F - F = \left( {{2^{101}} - {2^{100}} - {2^{99}} -  \ldots  - {2^3} - {2^2} - 2} \right) - \left( {{2^{100}} - {2^{99}} - {2^{98}} -  \ldots  - {2^2} - 2 - 1} \right)\\ \Rightarrow F = {2^{101}} - {2^{100}} - {2^{99}} - {2^3} - {2^2} - 2 - {2^{100}} + {2^{99}} + {2^{98}} +  \ldots  + {2^2} + 2 + 1\\\,\,\,\,\,\,\,\,\,\,\, = {2^{101}} - \left( {{2^{100}} + {2^{100}}} \right) - \left( {{2^{99}} - {2^{99}}} \right) - \left( {{2^{98}} - {2^{98}}} \right) - \left( {2 - 2} \right) + 1\\\,\,\,\,\,\,\,\,\,\,\, = {2^{101}} - {2.2^{100}} + 1\\\,\,\,\,\,\,\,\,\,\,\, = {2^{101}} - {2^{101}} + 1\\\,\,\,\,\,\,\,\,\,\,\, = 1.\end{array}\)

Chọn C.



Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay