Câu hỏi

Tìm \(m\) để đường thẳng \(\left( d \right):\,\,y = {m^2}x + m\,\,\left( {m \ne 0} \right)\) song song với đường thẳng \(\left( {d'} \right):\,\,y = 4x - 2.\)

  • A \(m =  - 4\)
  • B \(m =  - 2\)  
  • C \(m = 4\)               
  • D \(m = 2\)   

Phương pháp giải:

Cho hai đường thẳng \(d:\,\,y = ax + b\) và \(d':\,\,y = a'x + b'.\)

Khi đó: \(d//d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right..\)

Lời giải chi tiết:

\(\left( d \right):\,\,y = {m^2}x + m\,\,\left( {m \ne 0} \right)\) song song với đường thẳng \(\left( {d'} \right):\,\,y = 4x - 2.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} = 4\\m \ne  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 2\\m =  - 2\end{array} \right.\\m \ne  - 2\end{array} \right. \Leftrightarrow m = 2.\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay