Môn Lý - Lớp 12
50 bài tập Tổng hợp hai dao động điều hòa cùng phương, cùng tần số - Phương pháp giản đồ Frenen mức độ vận dụng cao
Câu hỏi
Một chất điểm có khối lượng 0,3 kg đồng thời thực hiện hai dao động điều hòa cùng phương, cùng tần số. Ở thời điểm t bất kì, li độ của hai dao động thành phần luôn thỏa mãn \(16{\text{x}}_1^2 + 9{\text{x}}_2^2 = 25\) (\({x_1}\), \({x_2}\) tính bằng cm). Biết lực phục hồi cực đại tác dụng lên chất điểm trong quá trình dao động là \({F_{ma{\text{x}}}} = 0,4\,\,N\). Tần số góc của dao động có giá trị
- A \(10\pi \,\,rad/s\)
- B 8 rad/s
- C 4 rad/s
- D \(4\pi \,\,rad/s\)
Phương pháp giải:
Tần số góc của dao động: \(\omega = \sqrt {\frac{k}{m}} \)
Độ lớn lực phục hồi tác dụng lên vật: \({F_{ph}} = \left| {k.x} \right|\)
Lời giải chi tiết:
Ta có \(16{x_1}^2 + 9{x_2}^2 = 25 \Rightarrow \frac{{{x_1}^2}}{{1,{{25}^2}}} + \frac{{{x_2}^2}}{{{{\left( {\frac{5}{3}} \right)}^2}}} = 1\)
Vậy hai dao động này vuông pha và có các biên độ thành phần:
\(\left\{ \begin{gathered}{A_1} = 1,25\,\,\left( {cm} \right) \hfill \\{A_2} = \frac{5}{3}\,\,\left( {cm} \right) \hfill \\ \end{gathered} \right. \Rightarrow A = \sqrt {{A_1}^2 + {A_2}^2} = \sqrt {1,{{25}^2} + {{\left( {\frac{5}{3}} \right)}^2}} = \frac{{25}}{{12}}\,\,\left( {cm} \right)\)
Độ lớn lực phục hồi tác dụng lên vật:
\({F_{ph\max }} = k.A \Rightarrow k = \frac{{{F_{ph\max }}}}{A} = \frac{{0,4}}{{\frac{{25}}{{12}}{{.10}^{ - 2}}}} = 19,2\,\,\left( {N/m} \right)\)
Tần số góc của dao động: \(\omega = \sqrt {\frac{k}{m}} = \sqrt {\frac{{19,2}}{{0,3}}} = 8\,\,\left( {rad/s} \right)\)
Chọn B.