Câu hỏi
Tính
Câu 1: \(3\sqrt {18} - \sqrt {32} + 4\sqrt 2 + \sqrt {162} \)
- A \(9\sqrt 2\)
- B \(18\sqrt 2\)
- C \(18\)
- D \(9\)
Lời giải chi tiết:
\(\begin{array}{l}\,\,\,3\sqrt {18} - \sqrt {32} + 4\sqrt 2 + \sqrt {162} \\ = 3\sqrt {{3^2}.2} - \sqrt {{4^2}.2} + 4\sqrt 2 + \sqrt {{9^2}.2} \\ = 9\sqrt 2 - 4\sqrt 2 + 4\sqrt 2 + 9\sqrt 2 \\ = 18\sqrt 2 .\end{array}\)
Câu 2: \(2\sqrt {48} - 4\sqrt {27} + \sqrt {75} + \sqrt {12} \)
- A \(3\sqrt 3 \)
- B \(\sqrt 3 \)
- C \(-3\sqrt 3 \)
- D \(-\sqrt 3 \)
Lời giải chi tiết:
\(\begin{array}{l}\,\,2\sqrt {48} - 4\sqrt {27} + \sqrt {75} + \sqrt {12} \\ = 2\sqrt {{4^2}.3} - 4\sqrt {{3^2}.3} + \sqrt {{5^2}.3} + \sqrt {{2^2}.3} \\ = 8\sqrt 3 - 12\sqrt 3 + 5\sqrt 3 + 2\sqrt 3 \\ = 3\sqrt 3 \end{array}\)
Câu 3: \(\sqrt {21 + 8\sqrt 5 } + \sqrt {21 - 8\sqrt 5 } \)
- A \( 2\sqrt 5\)
- B \(-2 \sqrt 5\)
- C \(0\)
- D \(8\)
Lời giải chi tiết:
\(\begin{array}{l}\,\,\sqrt {21 + 8\sqrt 5 } + \sqrt {21 - 8\sqrt 5 } \\ = \sqrt {16 + 2.4.\sqrt 5 + 5} + \sqrt {16 - 2.4.\sqrt 5 + 5} \\ = \sqrt {{4^2} + 2.4.\sqrt 5 + {{(\sqrt 5 )}^2}} + \sqrt {{4^2} - 2.4.\sqrt 5 + {{(\sqrt 5 )}^2}} \\ = \sqrt {{{(4 + \sqrt 5 )}^2}} + \sqrt {{{(4 - \sqrt 5 )}^2}} \\ = \left| {4 + \sqrt 5 } \right| + \left| {4 - \sqrt 5 } \right|\\ = 8.\end{array}\)
Câu 4: \(\frac{{5\sqrt 2 - 2\sqrt 5 }}{{\sqrt 5 - \sqrt 2 }} - \frac{9}{{\sqrt {10} + 1}}\)
- A \(-2\)
- B \(2\)
- C \(1\)
- D \(-1\)
Lời giải chi tiết:
\(\begin{array}{l}\,\,\frac{{5\sqrt 2 - 2\sqrt 5 }}{{\sqrt 5 - \sqrt 2 }} - \frac{9}{{\sqrt {10} + 1}}\\ = \frac{{\sqrt 5 .\sqrt 2 .(\sqrt 5 - \sqrt 2 )}}{{\sqrt 5 - \sqrt 2 }} - \frac{{9(\sqrt {10} - 1)}}{{10 - 1}}\\ = \sqrt {10} - (\sqrt {10} - 1)\\ = 1.\end{array}\)