Câu hỏi
Tìm GTLN , GTNN của các hàm số chứa căn: \(y = f(x) = x\sqrt {1 - {x^2}} \)
- A \( \mathop {\min y}\limits_{\left[ { - 1;1} \right]} = - \dfrac{1}{2};\mathop {\max y}\limits_{\left[ { - 1;1} \right]} = \dfrac{1}{2}.\)
- B \( \mathop {\min y}\limits_{\left[ { - 1;1} \right]} = 0;\mathop {\max y}\limits_{\left[ { - 1;1} \right]} = \dfrac{1}{2}.\)
- C \( \mathop {\min y}\limits_{\left[ { - 1;1} \right]} = - \dfrac{1}{2};\mathop {\max y}\limits_{\left[ { - 1;1} \right]} = 0.\)
- D \( \mathop {\min y}\limits_{\left[ { - 1;1} \right]} = - \dfrac{\sqrt{2}}{2};\mathop {\max y}\limits_{\left[ { - 1;1} \right]} = \dfrac{1}{2}.\)
Lời giải chi tiết:
ĐK: \(1 - {x^2} \ge 0 \Leftrightarrow - 1 \le x \le 1 \Leftrightarrow \,x \in \left[ { - 1;1} \right]\)
+ TXĐ: \(D = \left[ { - 1;1} \right]\)
+ \(y' = \sqrt {1 - {x^2}} + x.\dfrac{{ - 2x}}{{x\sqrt {1 - {x^2}} }} = \sqrt {1 - {x^2}} - \dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}\)
Cho \(y' = 0 \Leftrightarrow \sqrt {1 - {x^2}} = \dfrac{{{x^2}}}{{\sqrt {1 - {x^2}} }}\)
\(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow 1 - {x^2} = \,{x^2} \Leftrightarrow \,{x^2} = \dfrac{1}{2}\, \Leftrightarrow \,x = \pm \sqrt {\dfrac{1}{2}} \,\,\,\,\left( {tm} \right)\)
Thay \(x = - 1\)vào \(f\left( x \right)\) ta có \(f\left( { - 1} \right) = 0.\)
Thay \(x = \left( { - \sqrt {\dfrac{1}{2}} } \right)\) vào \(f\left( x \right)\)ta có \(f\left( { - \sqrt {\dfrac{1}{2}} } \right) = \dfrac{{ - 1}}{2}.\)
Thay \(x = \sqrt {\dfrac{1}{2}} \)vào \(f\left( x \right)\)ta có \(f\left( {\sqrt {\dfrac{1}{2}} } \right) = \dfrac{1}{2}.\)
Thay \(x = 1\)vào \(f\left( x \right)\)ta có \(f\left( 1 \right) = 0.\)
\( \Rightarrow \mathop {\min y}\limits_{\left[ { - 1;1} \right]} = - \dfrac{1}{2};\mathop {\max y}\limits_{\left[ { - 1;1} \right]} = \dfrac{1}{2}.\)