Câu hỏi
Tìm \(m\) để đường thẳng \(y = m\) cắt đồ thị của hàm số \(y = \frac{{\sqrt {{x^2} + 4x + 4} }}{{x + 2}} - \left| {x - 2} \right|\) tại hai điểm phân biệt?
- A \( - 5 < m < - 3\)
- B \(\left[ \begin{array}{l}m < - 5\\m > - 3\end{array} \right.\)
- C \(m = 1\)
- D \(m > 1\)
Phương pháp giải:
Số giao điểm của đồ thị hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) là số nghiệm của phương trình \(f\left( x \right) = g\left( x \right)\).
Lời giải chi tiết:
Ta có: \(y = \frac{{\sqrt {{x^2} + 4x + 4} }}{{x + 2}} = \frac{{\left| {x + 2} \right|}}{{x + 2}} - \left| {x - 2} \right|\)
Ta có bảng xét dấu:
\( \Rightarrow y = \frac{{\sqrt {{x^2} + 4x + 4} }}{{x + 2}} = \frac{{\left| {x + 2} \right|}}{{x + 2}} - \left| {x - 2} \right| = \left\{ {\begin{array}{*{20}{c}}{ - x + 3{\rm{ }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi }}x \ge 2}\\{x - 1{\rm{ }}\,\,\,\,\,{\rm{khi }}\,\,\, - 2 \le x < 2}\\{x - 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{ khi }}\,\,\,x < - 2}\end{array}} \right.\)
Đồ thị hàm số:
Dựa vào đồ thị hàm số ở trên, ta thấy để đường thẳng \(y = m\) cắt đồ thị của hàm số \(y = \frac{{\sqrt {{x^2} + 4x + 4} }}{{x + 2}} - \left| {x - 2} \right|\) tại hai điểm phân biệt thì \(\left[ \begin{array}{l}m < - 5\\m > - 3\end{array} \right..\)
Chọn B