Câu hỏi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Diện tích hai phần \(A\) và \(B\) lần lượt là \(\dfrac{{16}}{3}\) và \(\dfrac{{63}}{4}.\) Tính \(\int\limits_{ - 1}^{\frac{3}{2}} {f\left( {2x + 1} \right)dx} \).

  • A \(\dfrac{{253}}{{12}}\)
  • B \(\dfrac{{253}}{{24}}\)
  • C \( - \dfrac{{125}}{{24}}\)
  • D \( - \dfrac{{125}}{{12}}\)

Phương pháp giải:

Sử dụng phương pháp đổi biến số để  đưa tích phân về biến \(t.\)

Sử dụng công thức \(\int\limits_a^c {f\left( x \right)d} x = \int\limits_a^b {f\left( x \right)dx}  + \int\limits_b^c {f\left( x \right)dx} \).

Lời giải chi tiết:

Xét  \(\int\limits_{ - 1}^{\frac{3}{2}} {f\left( {2x + 1} \right)dx} \). Đặt \(2x + 1 = t \Leftrightarrow 2dx = dt \Leftrightarrow dx = \dfrac{{dt}}{2}\).

Đổi cận:\(\left\{ \begin{array}{l}x =  - 1 \Rightarrow t =  - 1\\x = \dfrac{3}{2} \Rightarrow t = 4\end{array} \right.\).

Khi đó ta có \(\int\limits_{ - 1}^{\dfrac{3}{2}} {f\left( {2x + 1} \right)dx}  = \dfrac{1}{2}\int\limits_{ - 1}^4 {f\left( t \right)dt}  = \dfrac{1}{2}\int\limits_{ - 1}^4 {f\left( x \right)dx} \)\( = \dfrac{1}{2}\left( {\int\limits_{ - 1}^1 {f\left( x \right)dx}  + \int\limits_1^4 {f\left( x \right)dx} } \right)\)

Từ hình vẽ ta có \(\int\limits_{ - 1}^1 {f\left( x \right)dx}  = \dfrac{{16}}{3};\,\int\limits_1^4 {f\left( x \right)dx}  =  - \dfrac{{63}}{4}\)

Nên \(\int\limits_{ - 1}^{\dfrac{3}{2}} {f\left( {2x + 1} \right)dx}  = \dfrac{1}{2}\left( {\int\limits_{ - 1}^1 {f\left( x \right)dx}  + \int\limits_1^4 {f\left( x \right)dx} } \right) = \dfrac{1}{2}\left( {\dfrac{{16}}{3} - \dfrac{{63}}{4}} \right) =  - \dfrac{{125}}{{24}}\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay