Câu hỏi

Cho \(A = \left\{ { - 4; - 2; - 1;2;3;4} \right\}\) và \(B = \left\{ {\left. {x \in \mathbb{Z}} \right|\,\left| x \right| \le 4} \right\}\). Tìm số tập hợp \(X\) sao cho \(X \subset B\backslash A\)

  • A \(7\)
  • B \(8\)
  • C \(6\)
  • D \(5\)

Phương pháp giải:

Giải tìm \(B\) từ đó tìm \(B\backslash A\) để tìm \(X\)

Lời giải chi tiết:

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{\left| x \right| \le 4}\\{x \in \mathbb{Z}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 4 \le x \le 4}\\{x \in \mathbb{Z}}\end{array}} \right. \Leftrightarrow x \in \left\{ { - 4; - 3; - 2; - 1;\,\,0;\,\,1;\,\,2;\,\,3;\,\,4} \right\}\)

\(\begin{array}{l} \Rightarrow B = \left\{ { - 4; - 3; - 2; - 1;\,\,0;\,\,1;\,\,2;\,\,3;\,\,4} \right\}\\ \Rightarrow B\backslash A = \left\{ { - 3;0;1} \right\}.\end{array}\)

\( \Rightarrow X \subset B\backslash A\) thì các tập hợp \(X\) là:  \(\emptyset ,\,\,\left\{ { - 3} \right\},\,\left\{ 0 \right\},\,\,\left\{ 1 \right\},\,\,\left\{ { - 3;0} \right\},\,\,\left\{ { - 3;1} \right\},\,\,\left\{ {0;1} \right\},\,\,\left\{ { - 3;0;1} \right\}.\)

Chọn  B.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay