Câu hỏi

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên sau

 

Khẳng định nào sau đây sai?

  • A Hàm số đạt cực đại tại \(x = 1\)                                        
  • B Hàm số đồng biến trên khoảng \(\left( { - \infty ;1} \right)\)
  • C Hàm số nghịch biến trên khoảng \(\left( {1; + \infty } \right)\)                                 
  • D Đồ thị hàm số có 3 đường tiệm cận

Phương pháp giải:

Sử dụng cách đọc bảng biến thiên

Hàm số \(y = f\left( x \right)\) có \(y' > 0\) trên \(\left( {a;b} \right)\) thì đồng biến trên \(\left( {a;b} \right)\)

Sử dụng định nghĩa tiệm cận

Đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(y = {y_0}\) làm tiệm cận ngang nếu thỏa mãn 1 trong các điều kiện sau \(\mathop {\lim }\limits_{x \to  + \infty } y = {y_0};\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\)

Đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(x = {x_0}\) làm tiệm cận đứng nếu thỏa mãn 1 trong các điều kiện sau \(\mathop {\lim }\limits_{x \to x_0^ + } x =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } x =  - \infty ;\mathop {\lim }\limits_{x \to x_0^ - } x =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } x =  - \infty \)

Lời giải chi tiết:

Từ BBT ta thấy hàm số đồng biến trên \(\left( { - \infty ; - 1} \right);\left( { - 1;1} \right)\) nên B sai vì trên khoảng \(\left( { - \infty ;1} \right)\) thì hàm số gián đoạn tại \(x =  - 1.\)

Hàm số nghịch biến trên \(\left( {1; + \infty } \right)\) nên C đúng. Dễ thấy A đúng.

Lại có \(\mathop {\lim }\limits_{x \to  - {1^ + }} x =  - \infty \) nên \(x =  - 1\) là TCĐ của đồ thị hàm số

Và \(\mathop {\lim }\limits_{x \to  - \infty } y = 1;\,\mathop {\lim }\limits_{x \to  + \infty } y =  - 1\) nên \(y = 1;y =  - 1\) là hai tiệm cận ngang của đồ thị hàm số.

Vậy đồ thị hàm số có ba tiệm cận nên D đúng.

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay