Câu hỏi

Xét các khẳng định sau

i) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực tiểu tại \(x = {x_0}\) thì \(\left\{ \begin{array}{l}f'({x_0}) = 0\\f''({x_0}) > 0\end{array} \right.\)

ii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\)và đạt cực đại tại \(x = {x_0}\) thì \(\left\{ \begin{array}{l}f'({x_0}) = 0\\f''({x_0}) < 0\end{array} \right.\)

iii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\) và \(f''({x_0}) = 0\)thì hàm số không đạt cực trị tại \(x = {x_0}\).

Số khẳng định đúng trong các khẳng định trên là

  • A \(0\)
  • B \(1\)
  • C \(2\)
  • D \(3\)

Phương pháp giải:

Dựa vào điều kiện cần để hàm số có cực trị.

Lời giải chi tiết:

Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\left( {a;\,\,b} \right)\) và chứa \({x_0} \in \left( {a;\,\,b} \right)\) thỏa mãn  \(f'\left( {{x_0}} \right) = 0\) và có đạo hàm cấp hai khác \(0\) tại điểm \({x_0}\) thì:

+) Hàm số đạt cực đại tại \({x_0}\) khi \(f''\left( {{x_0}} \right) < 0.\)

+) Hàm số đạt cực tiểu tại \({x_0}\) khi \(f''\left( {{x_0}} \right) > 0.\)

\( \Rightarrow \) khẳng định i) và ii) sai.

Khi \(f''\left( {{x_0}} \right) = 0\) ta không kết luận về cực trị của hàm số.

\( \Rightarrow \) khẳng định iii) sai.

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay