Câu hỏi

Cho tập \(A = \left\{ {3;4;5;6} \right\}\). Tìm số các số tự nhiên có bốn chữ số được thành lập từ tập \(A\) sao cho trong mỗi số tự nhiên đó, hai chữ số \(3\) và \(4\) mỗi chữ số có mặt nhiều nhất \(2\) lần, còn hai chữ số \(5\) và \(6\) mỗi chữ số có mặt không quá \(1\) lần.

  • A \(24\)
  • B \(30\)
  • C \(102\).
  • D \(360\)

Lời giải chi tiết:

TH1: Số 3 và số 4 có mặt 2 lần, số 5 và 6 có mặt 0 lần \( \Rightarrow \) Có \(C_4^2.C_2^2 = 6\) số.

TH2: Số 3 có mặt 2 lần, số 4 có mặt 1 lần, số 5 có mặt 1 lần, số 6 có mặt 0 lần \( \Rightarrow \) Có \(C_4^2.C_2^1 = 12\) số.

TH tương tự TH2:

+) Số 3 có mặt 2 lần, số 4 có mặt 1 lần, số 5 có mặt 0 lần, số 6 có mặt 1 lần.

+) Số 4 có mặt 2 lần, số 3 có mặt 1 lần, số 5 có mặt 1 lần, số 6 có mặt 0 lần.

+) Số 4 có mặt 2 lần, số 3 có mặt 1 lần, số 5 có mặt 0 lần, số 6 có mặt 1 lần.

TH3: Số 3 có mặt 0 lần, số 4 có mặt 2 lần, số 5 và 6 có mặt 1 lần \( \Rightarrow \) Có \(C_4^2.2! = 12\) số.

TH tương tự TH3:

Số 4 có mặt 0 lần, số 3 có mặt 2 lần, số 5 và 6 có mặt 1 lần.

TH4: Số 3 có mặt 1 lần, số 4 có mặt 1 lần, số 5 và 6 có mặt 1 lần \( \Rightarrow \) Có \(4! = 24\) số.

Vậy có \(6 + 12.4 + 12.2 + 24 = 102\) số.

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay