Câu hỏi
Biết \(I = \int\limits_1^e {{x^2}\ln xdx} = a{e^3} + b\) với \(a,b\) là các số hữu tỉ. Giá trị của \(9\left( {a + b} \right)\) bằng
- A \(3\)
- B \(10\)
- C \(9\)
- D \(6\)
Phương pháp giải:
- Sử dụng tích phân từng phần, đặt \(\left\{ \begin{array}{l}u = \ln x\\dx = {x^2}dx\end{array} \right.\).
- Tính tích phân đã cho tìm \(a,b\) và kết luận.
Lời giải chi tiết:
Đặt \(\left\{ \begin{array}{l}u = \ln x\\dx = {x^2}dx\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = \dfrac{{{x^3}}}{3}\end{array} \right.\)
\( \Rightarrow I = \left. {\left( {\dfrac{{{x^3}}}{3}\ln x} \right)} \right|_1^e - \int\limits_1^e {\left( {\dfrac{{{x^3}}}{3}.\dfrac{1}{x}} \right)dx} = \dfrac{{{e^3}}}{3} - \dfrac{1}{3}\int\limits_1^e {{x^2}dx} = \dfrac{{{e^3}}}{3} - \left. {\dfrac{1}{3}.\dfrac{{{x^3}}}{3}} \right|_1^e = \dfrac{{{e^3}}}{3} - \dfrac{{{e^3}}}{9} + \dfrac{1}{9} = \dfrac{2}{9}{e^3} + \dfrac{1}{9}\)
\( \Rightarrow a = \dfrac{2}{9},b = \dfrac{1}{9} \Rightarrow 9\left( {a + b} \right) = 3\).
Chọn A.