Câu hỏi
Cho \(\tan \alpha = - \sqrt 5 \,\,\,\,\left( {\frac{\pi }{2} < \alpha < \pi } \right)\), Tính \(\cos \alpha \) và \(\sin 2\alpha \).
- A \(\cos \alpha = - \frac{{\sqrt 6 }}{6}\,\,;\,\,\sin 2\alpha = - \frac{{\sqrt 5 }}{3}\)
- B \(\cos \alpha = \frac{{\sqrt 6 }}{6}\,\,;\,\,\sin 2\alpha = \frac{{\sqrt 5 }}{3}\)
- C \(\cos \alpha = - \frac{{\sqrt 3 }}{6}\,\,;\,\,\sin 2\alpha = - \frac{{\sqrt 3 }}{3}\)
- D \(\cos \alpha = \frac{{\sqrt 3 }}{6}\,\,;\,\,\sin 2\alpha = \frac{{\sqrt 3 }}{3}\)
Phương pháp giải:
\(1 + {\tan ^2}x = \frac{1}{{{{\cos }^2}x}}\,\,;\,\,{\sin ^2}x + {\cos ^2}x = 1\,\,;\,\,\sin 2x = 2\sin x\cos x\)
Lời giải chi tiết:
Do \(\frac{\pi }{2} < \alpha < \pi \Rightarrow \cos \alpha < 0\)
Ta có: \(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha = 6 \Rightarrow \cos \alpha = \frac{{ - \sqrt 6 }}{6}\)
\(\sin \alpha = \cos \alpha .\tan \alpha = \frac{{\sqrt {30} }}{6} \Rightarrow \sin 2\alpha = 2\sin \alpha \cos \alpha = - \frac{{\sqrt 5 }}{3}\)
Chọn A.